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Abstract A family of explicit linear sixth algebraic order six-step methods with van-
ished phase-lag and its first derivative is obtained in this paper. The investigation of
the above family of methods contains:

– theoretical study of the new family of methods and
– computational study of the new family of methods.

The theoretical study of the above mentioned family of methods contains:

1. the development of the method,
2. the computation of the local truncation error,
3. the comparative local truncation error analysis. The comparison is taken place

between the new family of methods with the corresponding method with constant
coefficients and

4. the stability analysis of the new family of methods. The stability analysis is taken
place using test equation with different frequency than the frequency of the test
equation used for the phase-lag analysis of the methods.
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The application of the new family of linear six-step sixth algebraic order methods to
the resonance problem of the one-dimensional time independent Schrödinger equation
is used for the computational study of the new family of methods. The result of the
above mentioned theoretical and computational investigation is that the new proposed
family of linear explicit schemes are computationally and theoretically more effective
than other well known methods for the approximate solution of the radial Schrödinger
equation and related initial or boundary value problems with periodic and/or oscillating
solutions.

Keywords Phase-lag · Derivatives of the phase-lag · Initial value problems ·
Oscillating solution · Symmetric · Multistep · Schrödinger equation

1 Introduction

There are many real problems in sciences and engineering for which the mathematical
models can be expresses via special second-order periodic initial or boundary value
problems. Therefore the numerical solution of the above mentioned problems is of
great interest. The general form of the model of the above described problems can be
expressed in the form

y′′(x) = f (x, y), y(x0) = y0 and y′(x0) = y′
0. (1)

Remark 1 It is easy for one to see that one the main characteristics of the above
presented models is that these models consist of systems of second order ordinary
differential equations for the first derivatives y′ does not appear explicitly. (see for
more details [1–121] and references therein).

In Fig. 1, we present the formulation of this paper. More specifically:
In Sect. 2, we present a bibliography on the aims, scope, research and innovation on

the subject of this paper. In Sect. 3, a theoretical approach for the Phase-lag analysis of
the Symmetric Multistep Methods is presented. A direct formula for the computation

Fig. 1 Flowchart of the description of the form of the present paper
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of the phase-lag is also obtained. In Sect. 4, we investigate the development of the
new Family of Linear Explicit Six-Step Methods. We study two cases. In Sect. 5, we
study the Comparative Error Analysis. In Sect. 6, we investigate the Stability Analysis.
We use for this a scalar test equation with frequency different than the frequency of
the scalar test equation used for phase-lag analysis. Finally, in Sect. 7, the numerical
results produced using the resonance problem of the one-dimensional time independent
Schrödinger equation and the new proposed family of methods together with several
well known numerical algorithms are presented. In the same section, we describe
concluding remarks on the effectiveness of the methods used in this comparison.

2 Bibliography relevant on the subject of the paper

On the approximate solution of the radial time independent Schrödinger equation and
on the numerical solution of related initial or boundary-value problems with periodical
and/or oscillating solutions, much research and innovation has been done on the last
decades .

In Fig. 2, we present the main categories of finite difference methods on which the
research and innovation was taken place during the last decades. The main aim and
scope of this research and innovation was the production of effective, fast and reliable
numerical methods (see for example [1–113]).

Indicative bibliography on the above mentioned research and innovation is given
below :

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [1–7].

– In [8–13] exponentially and trigonometrically fitted Runge—Kutta and Runge–
Kutta Nyström methods are constructed.

Fig. 2 Categories of the finite difference methods developed the last decades
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– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [26–55].

– Symplectic integrators are investigated in [56–84].
– Exponentially and trigonometrically multistep methods have been produced in

[87–107].
– Nonlinear methods have been studied in [40] and [108]
– Review papers have been presented in [109–113]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [32,33])

3 Investigation on phase-lag for the symmetric multistep finite difference
methods

We consider the initial value problem (1) with periodical and/or oscillating solution.
We study the numerical solution of the above mentioned problem.

For the numerical solution of the problem (1), let us consider the multistep methods
given by :

m∑

i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ) (2)

where :

– m are the number of steps over the equally spaced intervals [xi , xi+1], i = 0(1)m−
1, where {xi }m

i=0 ∈ [a, b]
– h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of integration
– |a0| + |b0| �= 0

Remark 2 If bm = 0 the method is explicit, otherwise it is implicit.

Remark 3 If the method is symmetric then ai = am−i and bi = bm−i , i = 0(1)�m
2 �.

Remark 4 The Multistep Finite Difference Method (2) is associated with the operator

L(x) =
m∑

i=0

ci z(x + i h) − h2
m∑

i=0

bi z′′(x + i h) (3)

where z ∈ C2.

For the algebraic order and the conditions of consistency one can see [122].
Applying a symmetric 2k-step method, that is for i = −m(1)m, to the scalar test

equation
y′′ = −ω2 y (4)

a difference equation of the form

m∑

i=1

Ai (v) (yn+i + yn−i ) + A0 (v) yn = 0 (5)
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is obtained. We note that in (5):

– v = ω h,
– h is the step length and
– Ai (v) i = 0(1)k, are polynomials of v.

The characteristic equation associated with (5) is given by

m∑

i=1

Ai (v)(λi + λ−i ) + A0(v) = 0 (6)

From Lambert and Watson [14], we have the following definition:

Definition 1 A symmetric 2 m-step method with characteristic equation given by (6)
is said to have an interval of periodicity (0, v2

0) if, for all v ∈ (0, v2
0), the roots

λi , i = 1(1)2 m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 m (7)

where θ(v) is a real function of v.

Theorem 1 [24] The symmetric 2 m-step method with characteristic equation given
by (6) has phase-lag order q and phase-lag constant c given by:

− cvq+2 + O(vq+4) = 2
∑m

j=1 A j (v) cos( jv) + A0(v)

2
∑k

j=1 j2 A j (v)
(8)

If we know the number m, then we can produce the direct algorithm for the calcu-
lation of the phase-lag of the corresponding symmetric 2 m-step method.

Remark 5 In our case - for the family of linear explicit symmetric six-step methods
- the number m = 3 and the direct formula for the computation of the phase-lag is
given by:

−cvq+2 + O(vq+4) =2 A3(v) cos(3v) + 2 A2(v) cos(2v) + 2 A1(v) cos(v) + A0(v)

18 A3(v) + 8 A2(v) + 2 A1(v)
(9)

where q is the phase-lag order and c is the phase-lag constant.

4 The general family of linear explicit six-step methods

Our new proposed family of methods is belonged to the general explicit symmetric
2 m-step finite difference methods of the form:

yn+m +
m−1∑

i=0

ci (yn+i + yn−i ) + yn−m = h2
m−1∑

i=1

bi
[

f (xn+i , yn+i ) + f (xn−i , yn−i )
]

+ b0 f (xn, yn) (10)
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Fig. 3 Flowchart of the construction of any method of the family

where fi = y′′ (xi , qi ) , i = n − 2(1)n + 2.
Our studies refer to a special case of the above form (10) for m = 3.
More specifically, we will investigate the family of linear explicit symmetric six-

step finite difference methods of the form:

c3 yn+3 + c2 (yn+2 + yn−2) + c3 yn−3

= h2
[

b2 ( fn+2 + fn−2) + b1 ( fn+1 + fn−1) + b0 fn

]
(11)

Remark 6 For the family of numerical methods (11) we have :

– the coefficients ci , j = 2, 3 and b j , j = 0(1)2 are our free parameters to be
determined.

– h is the step size of the integration.
– the number of steps is defined to be n.
– yn is defined as the approximation of the solution at the point xn .
– xn = x0 + n h and
– x0 is the initial value point.

This family was first formed at [20].
In the flowchart of Fig. 3, we present the construction of any method of the family.

4.1 First method of the family

Let us consider the family of methods (11) with:

c3 = 1, b1 = −1

6
, b2 = 67

48
(12)

Application of the linear explicit six-step method (11) to the scalar test equation
(4), leads to the difference equation (5) with m = 3 and :

A3 (v) = 1, A2 (v) = c2 + 67

48
v2, A1 (v) = −1

6
v2, A0 (v) = v2 b0 (13)
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Based on the above polynomials A j (v) , j = 0(1)3 and the formula (9), the fol-
lowing formula for the direct computation of the phase-lag is produced:

Phase-Lag = 2 cos (3 v) + 2
(
c2 + 67

48 v2
)

cos (2 v) − 1
3 v2 cos (v) + v2 b0

18 + 8 c2 + 65
6 v2

= 0

(14)
and the following formula for the direct computation of the first derivative of the
phase-lag is also obtained:

First Derivative Phase-Lag = − T0
(
65 v2 + 48 c2 + 108

)2 = 0 (15)

where

T0 = 4355 sin (v) cos (v) v4 + 9360 (cos (v))2 sin (v) v2

+ 6336 sin (v) cos (v) v2 c2 − 130 sin (v) v4 + 6240 v (cos (v))3

+ 6912 (cos (v))2 sin (v) c2 − 96 (cos (v))2 v c2

+ 7236 sin (v) cos (v) v2 + 2304 sin (v) cos (v) c2
2

− 96 sin (v) v2 c2 + 15552 (cos (v))2 sin (v)

− 7236 (cos (v))2 v + 5184 sin (v) cos (v) c2 + 192 cos (v) v c2

− 2556 sin (v) v2 − 576 v c2 b0 − 4248 cos (v) v − 1728 sin (v) c2 + 48 v c2

− 1296 v b0 − 3888 sin (v) + 3618 v

Requesting the above mentioned family of methods (11) with coefficients given by
(12), to have vanished phase-lag and its first derivative, the following coefficients are
obtained :

c2 = T1

48 v sin (2 v) + 48 cos (2 v)

b0 = T2

48 v2 sin (2 v) + 48 v cos (2 v)
(16)

where

T1 = −67 v3 sin (2 v) + 4 sin (v) v3 − 72 v sin (3 v) − 48 cos (3 v)

T2 = 4 v2 sin (3 v) + 12 v2 sin (v) + 8 v cos (3 v) − 67 v cos (4 v)

+ 8 v cos (v) + 24 sin (5 v) + 120 sin (v) − 67 v

The formulae of the coefficients c2 and b0 which are given by (16) may subject
to heavy cancellations for some values of |v|. In this case the following Taylor series
expansions should be used :

c2 = −1 + 787

8064
v8 − 647

22680
v10
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+ 1314347

19160064
v12 − 798220931

21794572800
v14

+ 125596777

2384363520
v16 − 7455911565383

200074178304000
v18 + . . .

b0 = 61

24
− 787

3024
v6 + 8377

18144
v8

− 611279

1596672
v10 + 3765304141

9340531200
v12

− 91439949493

261534873600
v14 + 15413620895639

44460928512000
v16

−114092713192434497

364935301226496000
v18 + . . . (17)

The behavior of the coefficients is given in Fig. 4.
We present below the local truncation error of the new obtained method (11)–(12)

(mentioned as Linear Si x StepI ) with the coefficients given by (16)–(17) is given by:

LT ELinear Si x Step I = 787 h8

12096

(
y(8)

n + 4 ω6 y(2)
n + 3ω8 yn

)
+ O

(
h10

)
(18)

4.2 Second method of the family

We consider again the family of methods (11) with different coefficients :

b0 = 61

24
, b1 = −1

6
, b2 = 67

48
(19)

If we apply the above linear explicit six-step method to the scalar test Eq. (4), we
obtain the difference Eq. (5) with m = 3 and :

A3 (v) = a3, A2 (v) = c2 + 67

48
v2, A1 (v) = −1

6
v2, A0 (v) = 61

24
v2 (20)

If we substitute the above mentioned polynomials A j (v) , j = 0(1)3 into the
formula (9), we obtain the formula for the direct calculation of the phase-lag:

Phase-Lag = T3

18 c3 + 8 c2 + 65
6 v2

= 0 (21)

and the following formula for the direct calculation of the first derivative of the phase-
lag:

First Derivative Phase-Lag = − T4
(
65 v2 + 48 c2 + 108 c3

)2 = 0 (22)
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Fig. 4 Behavior of the coefficients of the new proposed method given by (16) for several values of v = ω h

where

T3 = 2 c3 cos (3 v) + 2

(
c2 + 67

48
v2

)
cos (2 v)

−1/3 v2 cos (v) + 61

24
v2

T4 = 9360 (cos (v))2 sin (v) v2c3

+ 4355 sin (v) cos (v) v4 + 6240 v c3 (cos (v))3

+ 6912 (cos (v))2 sin (v) c2c3

+ 15552 (cos (v))2 sin (v) c3
2
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+ 6336 sin (v) cos (v) v2c2 + 7236 sin (v) cos (v) v2c3

− 130 sin (v) v4 − 96 (cos (v))2 v c2

− 7236 (cos (v))2 v c3 + 2304 sin (v) cos (v) c2
2

+ 5184 sin (v) cos (v) c2c3 − 96 sin (v) v2c2

− 2556 sin (v) v2c3 + 192 cos (v) v c2 − 4248 cos (v) v c3

− 1728 sin (v) c2c3 − 3888 sin (v) c3
2 − 1416 v c2 + 324 v c3

We request now the satisfaction of the above mentioned Eqs. (21) and (22). This
satisfaction leads to the vanishing of the phase-lag and its first derivative. The request
of vanished phase-lag and its first derivative leads to the method (11)–(19) with coef-
ficients c j , j = 2, 3 given by:

c2 = T5

240 sin (v) + 48 sin (5 v)

c3 = T6

120 sin (v) + 24 sin (5 v)
(23)

where

T5 = − 366 sin (3 v) v2 + 32 sin (2 v) v2 − 335 sin (v) v2

− 67 sin (5 v) v2 + 16 sin (4 v) v2 + 16 cos (2 v) v

− 244 cos (3 v) v − 134 cos (v) v + 16 cos (4 v) v − 134 cos (5 v) v

T6 = −4 sin (3 v) v2 + 122 sin (2 v) v2 − 12 sin (v) v2

+ 122 cos (2 v) v − 8 cos (3 v) v − 8 cos (v) v + 67 cos (4 v) v + 67 v

The formulae of the coefficients c2 and c3 which are given by (23) may subject
to heavy cancellations for some values of |v|. In this case the following Taylor series
expansions should be used :

c2 = −1 − 787

15120
v6 + 1037

13440
v8

+ 6468857

39916800
v10 + 76974957359

653837184000
v12

− 1872015347

62270208000
v14 − 59563385403889

355687428096000
v16

− 2284124686606788527

12772735542927360000
v18 + · · ·

c3 = 1 + 787

15120
v6 + 103

5040
v8

− 1980527

39916800
v10 − 83521471

928746000
v12
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− 3754449563

62270208000
v14 + 247049291327

11115232128000
v16

+ 1203315005668907297

12772735542927360000
v18 + · · · (24)

The behavior of the coefficients is given in Fig. 5.
The method (11)–(19) (mentioned as Linear Si x StepI I ) with the coefficients

given by (23)–(24) has a local truncation error given by :

LT ELinear Si x Step I I = 787 h8

12096

(
y(8)

n + 4 ω6 y(2)
n + 3ω8 yn

)
+ O

(
h10

)

(25)

5 Comparative error analysis

Based on the flowchart of Fig. 1, continuing the theoretical investigation for the new
methods, we will study the local truncation error of the new obtained linear six-step
methods. We will compare this local truncation error with that of the linear six-step
method with constant coefficients.

We will study the local truncation error for the following methods:

– Explicit Linear Six-Step Methods with constant coefficients and of Algebraic
Order Six

– The New Linear Explicit Six-Step Method of Algebraic Order Six with Vanished
the Phase-Lag and its First Derivative Developed in Sect. 4.1 and

– The New Linear Explicit Six-Step Method of Algebraic Order Six with Vanished
the Phase-Lag and its First Derivative Developed in Sect. 4.2.

Therefore, we will study the following methods:

5.1 The sixth algebraic order classical method (i.e. the method (11) with constant
coefficients)

LT EC L = 787 h8

12096
y(8)

n + O
(

h10
)

(26)

5.2 The sixth algebraic order linear six-step method with vanished phase-lag and its
first derivative produced in Sect. 4.1

LT ELinear Si x Step I = 787 h8

12096

(
y(8)

n + 4 ω6 y(2)
n + 3ω8 y(2)

n

)
+ O

(
h10

)

(27)
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Fig. 5 Behavior of the coefficients of the new proposed method given by (23) for several values of v = ω h
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5.3 The sixth algebraic order linear six-step method with vanished phase-lag and its
first derivative produced in Sect. 4.2

LT ELinear Si x Step I I = 787 h8

12096

(
y(8)

n + 4 ω6 y(2)
n + 3ω8 y(2)

n

)
+ O

(
h10

)
(28)

Remark 7 It is easy to see that the local truncation errors (27) and (28) are exactly the
same. Therefore we will investigate the local truncation errors (26) and (27).

The investigation of the local truncation error of the one-dimensional time inde-
pendent Schrödinger equation, is based on the following procedure :

– We write the radial time independent Schrödinger equation in the following form:

y′′ (x) = f (x) y (x) (29)

– The function f (x) is expressed as (see for more details at Ixaru and Rizea [87]):

f (x) = g(x) + G (30)

where:
1. g(x) = V (x) − Vc = g,
2. Vc is the constant approximation of the potential and
3. G = ω2 = Vc − E .

– We substitute the derivatives y(i)
n , i = 2, 3, 4, . . . , with corresponding expressions

of the formula (30).
– Based on the above expressions we analyze the Local Truncation Error Formulae

(LTEF).
– The above mentioned analysis leads to new formulae of the LTEF which are

expressed as polynomials of G.

The Local Truncation Error Analysis is based on the Flowchart of the Fig. 6.
Based on the above mentioned flowchart, we calculate the derivatives in the for-

mulae of the Local Truncation Errors. The computations are based on the Eq. (30)
(i.e. on the formula: y′′(x) = f (x) = g(x) + G). Therefore we can now calculate the
formulae of y( j)

n , j = 2, 3, 4, . . ..

y(2)
n = (V (x) − Vc + G) y(x)

y(3)
n =

(
d

dx
g (x)

)
y (x) + (g (x) + G)

d

dx
y (x)

y(4)
n =

(
d2

dx2 g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x)

+ (g (x) + G)2 y (x)
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Fig. 6 Flowchart for the
comparative error analysis

y(5)
n =

(
d3

dx3 g (x)

)
y (x) + 3

(
d2

dx2 g (x)

)
d

dx
y (x)

+ 4 (g (x) + G) y (x)
d

dx
g (x) + (g (x) + G)2 d

dx
y (x)

y(6)
n =

(
d4

dx4 g (x)

)
y (x) + 4

(
d3

dx3 g (x)

)
d

dx
y (x)

+ 7 (g (x) + G) y (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

y (x)

+ 6 (g (x) + G)

(
d

dx
y (x)

)
d

dx
g (x)

+ (g (x) + G)3 y (x)

y(7)
n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4 g (x)

)
d

dx
y (x)

+11 (g (x) + G) y (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
y (x)

d2

dx2 g (x) + 13 (g (x) + G)

(
d

dx
y (x)

)
d2

dx2 g (x)
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+10

(
d

dx
g (x)

)2 d

dx
y (x) + 9 (g (x) + G)2 y (x)

d

dx
g (x) + (g (x) + G)3 d

dx
y (x)

y(8)
n =

(
d6

dx6 g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x)

+16 (g (x) + G) y (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
y (x)

d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
y (x)

)
d3

dx3 g (x)

+15

(
d2

dx2 g (x)

)2

y (x) + 48

(
d

dx
g (x)

)

(
d

dx
y (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 y (x)

d2

dx2 g (x) + 28 (g (x) + G) y (x)

(
d

dx
g (x)

)2

+12 (g (x) + G)2
(

d

dx
y (x)

)
d

dx
g (x)

+ (g (x) + G)4 y (x)

. . .

The current investigation for the local truncation error analysis is finalized via the
procedure mentioned below:

– We investigate the value of E within the Local Truncation Error analysis (we note
that the value of E is included in parameters v and ω), for two cases :

1. First Case : The Energy is close to the potential, i.e., G = Vc − E ≈ 0.
Consequently all the terms of the Local Truncation Error Formulae are vanished
(since they have terms of Gq , q = 1, 2, . . .) except those which are the free
terms of the polynomials in G (since they have terms of G0). Therefore, all
numerical methods of the same family of methods have comparable accuracy
for these values of E . The reason is that in the formulae of Local Truncation
Error for these values of E , the terms of power of G , say q , not equal to zero,
are equal to zero and only the terms of zero power of G are not vanished. As a
summary : The free from G terms of polynomials are the same for the cases of
the same family of methods and therefore for the same family of methods: the
classical method - i.e. the method with constant coefficients - and the methods
with vanished phase-lag and its derivatives are of the same accuracy.
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2. Second Case : G >> 0 or G << 0. In this case the term |G| is a large number.
Consequently, the methods of the family which have lower power of |G| are
more accurate than the methods of the family which have larger power of |G|.

– The computation of the asymptotic expansions of the Local Truncation Errors
Formulae is the final stage of the comparative error analysis

Remark 8 We note that the above mentioned procedure for the comparative local
truncation error analysis is valid for any model of a problem which has the form of
the Eq. (29)

The asymptotic expansions of the Local Truncation Errors Formulae mentioned
below is the result of the theoretical analysis presented above :

5.4 Classical method

LT EC L = h8
(

787

12096
y (x) G4 + · · ·

)
+ O

(
h10

)
(31)

5.5 The sixth algebraic order linear six-step methods with vanished phase-lag and its
first derivative produced in Sects. 4.1 and 4.2

LT ELinear Si x Step I &I I = h8
[(

8657

6048

(
d2

dx2 g (x)

)
y (x)

+ 787

1008

(
d

dx
g (x)

)
d

dx
y (x)

+ 787

2016
(g (x))2 y (x)

)
G2 + · · ·

]
+ O

(
h10

)
(32)

Based on the above analysis, we have the following theorem:

Theorem 2 – For the Classical Linear Six-Step Explicit Method, the error increases
as the fourth power of G.

– For the Linear Six-Step Explicit Methods with Vanished Phase-lag and its First
Derivative produced in this paper (Sects. 4.1, 4.2), the error increases as the second
power of G.

Therefore, for the numerical solution of the time independent radial Schrödinger
equation and related problems the Linear Six-Step Methods developed in Sects. 4.1
and 4.2 with Vanished Phase-Lag and its First Derivative are the most efficient from
theoretical point of view, especially for large values of |G| = |Vc − E |.
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6 Stability analysis

The stability—interval of periodicity analysis of any symmetric multistep finite differ-
ence method for the problems of the form of the radial Schrödinger equation is based
on the Flowchart of Fig. 7.

The stability investigation is based on the flowchart of Fig. 7. Application of the
new linear six-step symmetric methods developed in Sects. 4.1 and 4.2 to the scalar
test equation:

y′′ = −φ2 y. (33)

leads to the following difference equation:

A3 (s, v) (yn+3 + yn−3) + A2 (s, v) (yn+2 + yn−2)

+A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (34)

where s = φ h, v = ω h and

Fig. 7 Flowchart for the
stability—interval of periodicity
analysis of symmetric multistep
finite difference methods
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6.1 First method of the family

A3 (s, v) = 1, A2 (s, v) = − 1

48

T7

v sin (2 v) + cos (2 v)

A1 (s, v) = −1

6
s2, A0 (s, v) = 1

24

T8

v (v sin (2 v) + cos (2 v))
(35)

where

T7 = 134 sin (v) v3 cos (v) − 134 sin (v) cos (v) v s2

+288 sin (v) (cos (v))2 v − 4 sin (v) v3

−134 s2 (cos (v))2 + 192 (cos (v))3

−72 v sin (v) + 67 s2 − 144 cos (v)

T8 = s2
(

192 sin (v) (cos (v))4 + 8 sin (v)

(cos (v))2 v2 − 268 v (cos (v))4

+16 v (cos (v))3 − 144 sin (v) (cos (v))2

+ 4 v2 sin (v) + 268 v (cos (v))2 − 8 v cos (v)

+72 sin (v) − 67 v

)

6.2 Second method of the family

A3 (s, v) = T9

120 sin (v) + 24 sin (5 v)

A2 (s, v) = − 1

48

T10(
8 (cos (v))4 − 6 (cos (v))2 + 3

)
sin (v)

A1 (s, v) = −1

6
s2, A0 (s, v) = 61

24
s2 (36)

where

T9 = − 4 v2 sin (3 v) + 122 v2 sin (2 v) − 12 v2 sin (v)

+ 122 v cos (2 v) − 8 v cos (3 v) − 8 v cos (v) + 67 v cos (4 v) + 67 v

T10 = 536 sin (v) (cos (v))4 v2

− 536 sin (v) (cos (v))4 s2

− 64 sin (v) (cos (v))3 v2

+ 1072 v (cos (v))5 + 330 sin (v) (cos (v))2 v2

+ 402 sin (v) (cos (v))2 s2
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− 64 v (cos (v))4 − 852 v (cos (v))3

+ 18 v2 sin (v) − 201 s2 sin (v)

+ 48 v (cos (v))2 + 36 v cos (v)

Remark 9 The frequency of the scalar test Eq. (33) (which is used for the stability-
interval of periodicity analysis), φ is different from the frequency of the scalar test Eq.
(4), ω (which was used for the phase-lag analysis), i.e. ω �= φ.

We give the following definitions:

Definition 2 (see [14]) If a Symmetric Multistep Method has an interval of periodicity
equal to (0,∞), then is called P-stable.

Definition 3 In the case where the frequency of the scalar test equation for the phase-
lag analysis is the same as the frequency of the scalar test equation for the stability
analysis, i.e. in the case where s = v, then a method is called singularly almost P-stable
if its interval of periodicity is equal to (0,∞) − S.1

In Figs. 8 and 9 we present the s −w plane for the methods developed in this paper.

Remark 10 A shadowed region declares the s − v area where the methods are stable,
while a white area declares the area where the methods are unstable.

Remark 11 Depending on mathematical model of the specific problem one can chose
different parts of the s−v area. The mathematical model of the time independent radial
Schrödinger equation belongs to a category for which it is necessary to observe the
surroundings of the first diagonal of the s − v plane. For these cases of mathematical
models in order to apply the new produced methods, the frequency of the scalar test
equation for the phase-lag analysis must be equal to the frequency of the scalar test
equation for the stability analysis.

For the time independent radial Schrödinger equation and due to the above men-
tioned remark, the frequency of the scalar test equation for the phase-lag analysis is
equal to the frequency of the scalar test equation for the stability analysis. Therefore,
we investigate the case where s = v (i.e. see the surroundings of the first diagonal of
the s − v plane). Based on this investigation we obtain that the interval of periodicity
of the new methods produced in Sects. 4.1 and 4.2 are equal to: (0, 0.7).

The above investigation leads to the following theorem:

Theorem 3 The methods produced in Sects. 4.1 and 4.2:

– are of sixth algebraic order,
– have the phase-lag and its first derivative equal to zero
– have an interval of periodicity equals to: (0, 0.7) the frequency of the scalar test

equation for the phase-lag analysis must be equal to the frequency of the scalar
test equation for the stability analysis

1 where S is a set of distinct points
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Fig. 8 s − v plane of the the new developed methods in Sects. 4.1 and 4.2 with vanished phase-lag and its
first derivatives
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Fig. 9 The Woods-Saxon potential

7 Numerical results

In this section, we will investigate the effectiveness of the new produced methods in
Sects. 4.1 and 4.2.

The investigation consists the application of the new obtained sixth algebraic order
explicit linear six-step methods (of Sects. 4.1, 4.2) on the numerical solution of the
radial time-independent Schrödinger equation (see more information in [123–125]).

We base our study on the following mathematical model of the one-dimensional
time independent Schrödinger equation :

y′′(r) = [l(l + 1)/r2 + V (r) − k2] y(r). (37)

The above mathematical model belongs to the special second order boundary value
problems. The boundary conditions are given by:

y(0) = 0. (38)

In order to determine the second boundary condition, for large values of r , the char-
acteristics of the physical properties of the specific mathematical model are taken into
account.

The above mathematical model of (37) has some functions, quantities and parame-
ters which are defined below :

– We call the function W (r) = l(l + 1)/r2 + V (r) the effective potential. One basic
characteristic of the above mentioned function is: W (x) → 0 as x → ∞,

– We call the quantity k2 the energy and it is a real number,
– We call the quantity l angular momentum and it is a given integer,
– The function V denotes the potential.
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It is known (see Fig. 2) that we have two categories of finite difference methods for
the numerical solution of problems with mathematical model of the form of the radial
time independent Schrödinger equation :

– Methods with constant coefficients. We call this category: CATEGORY I
– Methods with coefficients dependent on the frequency of the problem. We call this

category: CATEGORY II

The new constructed methods obtained in Sects. 4.1 and 4.2 belong to the CATE-
GORY II.

In this category of methods (CATEGORY II), in order the methods to be possible
to be applied to any problem, the coefficients of the methods must be defined. In order
these coefficients to be defined, the frequency of the specific problem must be defined.

Therefore in our new obtained methods the frequency ω, (from which are depended
the coefficients of new developed methods), must be defined. Defining the frequency
ω, we can determine the coefficients of the new produced methods. Therefore, it will
be possible the new developed methods to be applied to any problem (see for example
the formulae in Sects. 4.1, 4.2). In the case of the radial time independent Schrödinger
equation the frequency ω (for l = 0) is given by :

ω =
√

|V (r) − k2| = √|V (r) − E | (39)

where V (r) is the potential and E is the energy.

7.1 Woods-Saxon potential

In order to apply a finite difference method to the numerical solution of the radial
time independent Schrödinger equation, the definition of a potential is required. For
our investigations on the numerical applications of this paper, the well known Woods-
Saxon potential is used. The Woods-Saxon potential has the form :

V (r) = u0

1 + q
− u0 q

a (1 + q)2 (40)

with q = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

In Fig. 9 we present the behavior of Woods-Saxon potential.
In the literature that are studies in which discrete approximations of several poten-

tials are shown. These investigations are based on the idea that some potentials (like
Woods-Saxon potential) have some critical points, the knowledge of which give us the
opportunity to have a very good picture of the potential. Based on the investigations
presented in [111,126] and [87] we can define the discrete approximation of the the
Woods-Saxon potential. Via this approximation we can define the parameter ω.
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The above mentioned study leads us to the following values of the parameter ω (see
for details [126] and [87]):

φ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(41)

For example, in the point of the integration region r = 6.5 − h, the value of ω is
equal to:

√−37.5 + E . So, w = ω h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of ω is equal to:

√−50 + E , etc.

7.2 Radial Schrödinger equation—the resonance problem

In this Section we study the numerical solution of the radial time independent
Schrödinger equation (37), using as potential the above described Woods-Saxon poten-
tial (40). The purpose of this investigation is the examination of the efficiency of the
new obtained methods.

7.3 The numerical solution

In the following we describe the process for the numerical approximation of the solu-
tion :

– Since the real interval of integration for the numerical solution of the radial time
independent Schrödinger equation is equal to [0,+∞), it is important this infinite
integration interval to be reduced a finite one. For the specific numerical example
we choose the interval of integration r ∈ [0, 15] .

– Our study will take into account a rather large domain of energies, i.e., E ∈
[1, 1000] within of which we will solve numerically the Eq. (37) The one-
dimensional time independent Schrödinger equation reduces to

y′′ (r) +
(

k2 − l(l + 1)

r2

)
y (r) = 0 (42)

for r greater than some value R, in the case of positive energies, E = k2, since
the potential decays faster than the term l(l+1)

r2 .
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),
where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respec-
tively. Thus, the solution of Eq. (37) (when r → ∞), has the asymptotic form

y (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(43)
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where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(44)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr)

and C (r) = −krnl (kr). With the above technique we transferred the boundary-
value problem into an initial-value problem. For this reason and in order to be
possible the application of the new obtained six-step methods, we need the values of
y j , j = 0(1)5. From the initial condition, we obtain y0. The values yi , i = 1(1)5
are obtained by using high order Runge–Kutta–Nyström methods (see [119] and
[120]). With these starting values, we evaluate at r6 of the asymptotic region the
phase shift δl .

– We will solve the known as resonance problem. For this problem we have positive
energies. We can have two caees:

1. Finding the phase-shift δl or
2. Finding those E , for E ∈ [1, 1000], at which δl = π

2 .

We actually solve the latter problem, known as the resonance problem.
– The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for large r. (45)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [15],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [15], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [15],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[28], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [88], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [27], which is indicated as Method MCR6

– The classical form of the sixth algebraic order six-step method developed in Sect. 4,
which is indicated as Method NMCL6.2

– The Phase-Fitted Method (Case 1) developed in [21], which is indicated as Method
NMPF1

– The Phase-Fitted Method (Case 2) developed in [21], which is indicated as Method
NMPF2

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
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Fig. 10 Accuracy (Digits) for several values of C PU Time (in Seconds) for the eigenvalue E2 =
341.495874. The nonexistence of a value of accuracy (Digits) indicates that for this value of CPU, accuracy
(Digits) is less than 0

– The New Linear Sixth Algebraic Order Six-Step Explicit Method developed in
Sect. 4.1, which is indicated as Method N6SMPFD1

– The New Linear Sixth Algebraic Order Six-Step Explicit Method developed in
Sect. 4.2, which is indicated as Method N6SMPFD2

The computed eigenenergies are compared with reference values. 3 In Figs. 10 and
11, we present the maximum absolute error Errmax = |log10 (Err) | where

3 The reference values are computed using the well known two-step method of Chawla and Rao [27] with
small step size for the integration.
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Fig. 11 Accuracy (Digits) for several values of C PU Time (in Seconds) for the eigenvalue E3 =
989.701916. The nonexistence of a value of accuracy (Digits) indicates that for this value of CPU, accuracy
(Digits) is less than 0

Err = |Ecalculated − Eaccurate| (46)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

In the present paper we have developed and studied a family of explicit linear sixth
algebraic order six-step methods with vanished phase-lag and its first derivative.

The study of the method consisted:
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1. the construction of the method,
2. the calculation of the local truncation error,
3. the comparative error analysis.
4. the stability analysis of the new family of methods. We note here that the frequency

of the test equation was different from the frequency of the test equation for the
phase-lag analysis of the methods.

5. The application of the new family of linear six-step sixth algebraic order methods
to the resonance problem of the radial time independent Schrödinger equation.

The computational results give us the following conclusions:

1. The classical form of the sixth algebraic order six-step method developed in Sect. 4,
which is indicated as Method NMCL6 has approximately the same efficiency than
the exponentially-fitted method of Raptis and Allison [88], which is indicated as
Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[15], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [28], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [15], which is indicated as
Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao with minimal phase-lag
[27], which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[15], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [15], which is indicated as
Method QT10

4. The Phase-Fitted Method (Case 1) developed in [21], which is indicated as Method
NMPF1 is more efficient than the classical form of the sixth algebraic order
six-step method developed in Sect. 4, which is indicated as Method NMCL6,
the exponentially-fitted method of Raptis and Allison [88] and the Phase-Fitted
Method (Case 2) developed in [21], which is indicated as Method NMPF2

5. The New Linear Sixth Algebraic Order Six-Step Explicit Method developed in
Sect. 4.2, which is indicated as Method N6SMPFD2 has generally better behavior
that all the above methods

6. The New Linear Sixth Algebraic Order Six-Step Explicit Method developed in
Sect. 4.1, which is indicated as Method N6SMPFD1 is the most efficient one

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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